何永琛,张胜棋,蒲亮,等. 低温氢气火炬燃烧放空特性数值模拟研究[J]. 真空与低温,2024,30(4):454−461. DOI: 10.12446/j.issn.1006-7086.2024.04.015
引用本文: 何永琛,张胜棋,蒲亮,等. 低温氢气火炬燃烧放空特性数值模拟研究[J]. 真空与低温,2024,30(4):454−461. DOI: 10.12446/j.issn.1006-7086.2024.04.015
HE Y C,ZHANG S Q,PU L,et al. Numerical simulation study on the combustion venting characteristics of cryogenic hydrogen flare[J]. Vacuum and Cryogenics,2024,30(4):454−461. DOI: 10.12446/j.issn.1006-7086.2024.04.015
Citation: HE Y C,ZHANG S Q,PU L,et al. Numerical simulation study on the combustion venting characteristics of cryogenic hydrogen flare[J]. Vacuum and Cryogenics,2024,30(4):454−461. DOI: 10.12446/j.issn.1006-7086.2024.04.015

低温氢气火炬燃烧放空特性数值模拟研究

Numerical Simulation Study on the Combustion Venting Characteristics of Cryogenic Hydrogen Flare

  • 摘要: 放空火炬系统作为氢液化、储运、加注等关键装备的末端保护屏障,在紧急处理大规模失衡氢气时起着关键作用。建立了低温氢气火炬燃烧排放过程的工程物理模型和三维CFD数值计算模型,对氢气放空燃烧过程进行数值模拟,评估了不同放空温度条件对火炬火焰燃烧特性及热辐射分布特征的影响。研究结果表明,在低温氢气燃烧排放过程中,由于冷氢气与空气混合不充分,射流火焰更易受环境影响,导致火焰形态及热辐射场分布特征变化明显;随着氢气排放温度接近环境温度,氢气密度减小,流速增大,火焰体积、热辐射场中心偏移距离、偏移角度均以逐渐减小的趋势变化。相较于低温排放(43 K)情况,排放温度为293 K时火焰体积、热辐射场中心偏移距离以及偏移角度分别减小了53.77 %、78.18 %和49.75 %,印证了低温条件会为火炬放空作业带来极大的危险性。研究可为放空火炬系统的布置设计和氢安全控制策略的制定提供指导。

     

    Abstract: The flare system, serving as the terminal protection barrier for key equipment such as hydrogen liquefaction, storage, and filling, plays a vital role in emergency handling of large-scale unbalanced hydrogen releases. In this study, we established engineering physical models and three-dimensional Computational Fluid Dynamics (CFD) numerical models for the combustion and venting process of low-temperature hydrogen flares, and evaluated the effects of different venting temperature conditions on the combustion characteristics and thermal radiation distribution of the flare flames. The results show that during the venting process of low-temperature hydrogen, insufficient mixing between cold hydrogen and air makes jet flames more susceptible to environmental influences, resulting in significant changes in flame morphology and thermal radiation field distribution characteristics. As the hydrogen venting temperature approaches ambient temperature, the hydrogen density decreases while the flow velocity increases, leading to gradual decreases in flame volume, center offset distance of the thermal radiation field, and offset angle. Compared to the case of low-temperature venting (43 K), the flame volume, center offset distance of the thermal radiation field, and offset angle decreased by 53.77%, 78.18%, and 49.75%, respectively, when the venting temperature was 293 K, indicating significantly increased hazard associated with low-temperature venting operations. This study provides guidance for the design of flare systems and the formulation of hydrogen safety control strategies.

     

/

返回文章
返回