姚磊, 吴辉, 冯钊赞, 等. 基于冲击相变技术的IGCT冷板研究[J]. 真空与低温, 2021, 27(2): 152-158. DOI: 10.3969/j.issn.1006-7086.2021.02.008
引用本文: 姚磊, 吴辉, 冯钊赞, 等. 基于冲击相变技术的IGCT冷板研究[J]. 真空与低温, 2021, 27(2): 152-158. DOI: 10.3969/j.issn.1006-7086.2021.02.008
YAO Lei, WU Hui, FENG Zhaozan, et al. Research on IGCT Cold Plate Based on Jet Phase Change Technology[J]. VACUUM AND CRYOGENICS, 2021, 27(2): 152-158. DOI: 10.3969/j.issn.1006-7086.2021.02.008
Citation: YAO Lei, WU Hui, FENG Zhaozan, et al. Research on IGCT Cold Plate Based on Jet Phase Change Technology[J]. VACUUM AND CRYOGENICS, 2021, 27(2): 152-158. DOI: 10.3969/j.issn.1006-7086.2021.02.008

基于冲击相变技术的IGCT冷板研究

Research on IGCT Cold Plate Based on Jet Phase Change Technology

  • 摘要: 针对IGCT等大功率半导体器件在高热流密度下的散热问题,以R245fa作为工质,研究了3种不同射流孔板与2种冲击表面对射流冲击相变换热性能的影响。结果表明,平均对流换热系数随射流速度的增加而增大;相变产生的气泡对换热性能的影响很大,选取合适的流量和优化冷板结构设计,使气泡在增强流体扰动的同时也能及时排出,最大程度增强换热能力;采用合适尺度的喷砂表面能增加气化核心数,提高换热性能;增加矩形截面直肋后的射流冲击相变换热性能远优于水冷。

     

    Abstract: This paper addresses the heat dissipation problem of high-power semiconductor devices such as IGCT at high heat flux density,the effects of three different jet orifice plates and two kinds of impact surfaces on the phase-change heat transfer performance of jet impingement are studied with R245fa as working fluid.The results show that the average convective heat transfer coefficient increases with the increase of jet velocity;The bubble generated by the phase-change has a great influence on the heat transfer performance,it is necessary to select the appropriate flow rate and optimize the structure design of the cold plate,so that the bubbles can be discharged in time while enhancing the fluid disturbance,so as to maximize the heat transfer capacity;Using a suitable size of sandblasted surface can increase the number of vaporization cores and improve heat transfer performance;The phase-change heat transfer performance of jet impingement with rectangular straight fin is much better than that of water cooling.

     

/

返回文章
返回