徐莺歌,王世伟,梁补女,等. VS4/rGO纳米复合材料的制备及储钠性能研究[J]. 真空与低温,2023,29(4):348−355. DOI: 10.3969/j.issn.1006-7086.2023.04.004
引用本文: 徐莺歌,王世伟,梁补女,等. VS4/rGO纳米复合材料的制备及储钠性能研究[J]. 真空与低温,2023,29(4):348−355. DOI: 10.3969/j.issn.1006-7086.2023.04.004
XU Y G,WANG S W,LIANG B N,et al. Research on the preparation and sodium-ion storage performance of VS4/rGO nanocomposites[J]. Vacuum and Cryogenics,2023,29(4):348−355. DOI: 10.3969/j.issn.1006-7086.2023.04.004
Citation: XU Y G,WANG S W,LIANG B N,et al. Research on the preparation and sodium-ion storage performance of VS4/rGO nanocomposites[J]. Vacuum and Cryogenics,2023,29(4):348−355. DOI: 10.3969/j.issn.1006-7086.2023.04.004

VS4/rGO纳米复合材料的制备及储钠性能研究

Research on the Preparation and Sodium-ion Storage Performance of VS4/rGO Nanocomposites

  • 摘要: 电极材料的尺寸和电导率在钠离子电池的反应动力学中起着重要的作用。VS4具有高的理论比容量,但电导率较低,为了提高VS4的储钠性能,本文采用一步水热法制备了VS4/rGO纳米复合材料,对其晶体结构、微观组织及储钠性能进行了研究。结果表明:当电流密度为0.1 A/g时,160 °C水热条件下制备的VS4/rGO,经100圈循环,放电比容量为300 mA·h/g;当电流密度为0.5 A/g时,经300圈长循环,放电容量为211.4 mA·h/g;在0.1、0.2、0.5、1、2、5 A/g的电流密度下,放电比容量分别为430、400、300、200、150、100 mA·h/g,具有良好的倍率性能。VS4/rGO具有出色的储钠性能是由于VS4纳米颗粒与高导电性石墨烯网络之间的协同效应缩短了Na+的扩散路径,扩大了电解液与电极材料的接触面积,提高了VS4的电化学反应可逆性。

     

    Abstract: The size and conductivity of electrode materials play an important role in reaction kinetics of the sodium-ion batteries. VS4 has high theoretical specific capacity but low conductivity. In order to improve the sodium-ion storage performance of VS4, VS4/rGO nanocomposites were prepared by one-step hydrothermal method. The results showed that the specific discharge capacity of VS4/rGO prepared at 160 °C under hydrothermal condition was 300 mA·h/g after 100 cycles at 0.1 A/g. When the current density was 0.5 A/g, the discharge capacity was 211.4 mA·h/g after 300 cycles. At current densities of 0.1, 0.2, 0.5, 1, 2 and 5 A/g, the discharge specific capacities were 430, 400, 300, 200, 150 and 100 mA·h/g, respectively, showed favorable rate performance. The VS4/rGO has excellent sodium-ion storage performance due to the synergistic effect between VS4 nanoparticles and the highly conductive graphene network, which shorted the diffusion path of Na+, expanded the contact area between the electrolyte and electrode materials, and improved the electrochemical reaction reversibility of VS4.

     

/

返回文章
返回